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FOREWORD 

This docf:'ent is one of sixteen sections that comprise the final 
report prepared by the Minneapolis-Honeywell Regulator Company for the 
National Aeronautics and Space Administration under contract NASw-563. 
The report is issued in the following sixteen sections to facilitate 
updating as progress warrants: 

summary 

Control of Plants Whose Representation Contains Derivatives 
of the Control Variable 

Modes of Finite Response Time Control 

A Sufficient Condition in Optimal Control 

Time Optimal Control of Linear Recurrence Systems 

Time-Optimal Bounded Phase Coordinate Control of Linear 
Recurrence Systems 

Penalty Functions and Bounded Phase Coordinate Control 

Linear Programming and Bounded Phase Coordinate Control 

Time Optimal Control with Amplitude and Rate Limited Controls 

A Concise Formulation of a Bounded Phase Coordinate Control 
Problem as a Problem in the Calculus of Variations 

A Note on System Truncation 

State Determination for a Flexible Vehicle Without a Mode 
Shape Requirement 

An Application of the Quadratic Penalty Function 
to the Determination of a Linear Control for a Flexible Vehicle 

Minimum Disturbance Effects Control of Linear Systems with 
Linear Controllers 

A n  Alternate Derivation and Interpretation of the Drift-Mini- 
Principle 

A Minimax Control for a Plant Subjected to a Known had Disturbance 

Criterion 

A 

Section 1 (1541-TR 1) provides the motivation for the study efforts 
The and objectively discusses the significance of the results obtained. 

results of inconclusive and/or unsuccessful investigations are presented. 
Linear programming is reviewed in detail adequate for sections 6, 8, and 16. 

It is shown in section 2 that the prely formal procedure for synthe- 
sizing an optimum bang-bang controller for a plant whose representation 
contains derivatives of the control variable yields a correct result. 
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In section 3 it is shown that the problem of controlling m components 
(1 < m en), of the state vector for an n-th order linear constant coefficient 
plant, To zero in finite time can be reformulated as a problem of controlling 
a single component. 

Section 4 shows PontriagidsMaximum Principle is often a sufficient 
condition for optimal control of linear plants. 

Section 5 develops an algorithm for comprting the time optimal control 
functions for plants represented by linear recurrence equations. 
may be to convex target sets defined by quadratic forms. 

Steering 

In section 6 it is shown that linear inequality phase constraints 
can be transformed into similar constraints on the control variables. 
Bkthods for finding controls are discussed. 

Existence of and approximations to optimal bounded phase coordinate 
controls by use of penalty functions are discussed in section 7. 

In section 8 a maximum principle is proven for time-optimal control 
witn bounded phase constraints. An existence theorem is proven. The 
problem solution is reduced to linear programming. 

A backing-out-of-the-origin procedure for obtaining trajectories for 
time-optimal control with amplitude and rate limited control variables is 
presented in section 9. 

Section 10 presents a reformulation of a time-optimal bounded phase 
coordinate problem into a standard calculus of variations problem. 

A mathematical method for assessing the approximation of a system by 
a lower order representation is presented in section 11. 

Section I2 presents a method for determination of the state of a 
flexible vehicle that does not require mode shape information. 

The quadratic penalty function criterion is applied in section 13 to 
develop a linear control law for a flexible rocket booster. 

In section 14 a method for feedback control synthesis for minimum load 
disturbance effects is derived. Examples are presented. 

Section 15 shows that a linear fixed gain controller for a linear 
constant coefficient plant may yield a certain type of invariance to 
disturbances. Conditions for obtaining such invariance are derived using 
the concept of complete controllability. Th drift minimum condition is 
obtained as a specific example. 2 

In section 16 linear programming is used to determine a control function 
that minimizes the effects of a known load disturbance. 
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CONTROL OF SYSTEMS COWAINING 

DERIVATIVES OF THE CONTROL 

VAFUABLE* 
by Wayne Schmedeke * 

ABSTRACT 

Problems of control of plants modeled by differential 

equations containing derivatives of the control (or  forcing) 

functions are discussed,, These right side plant dynamics in 
conjunction with relay type Jumps in the forcing functions re- 

quire an analysis o r  synthesis method to accommodate derivatives 

of step functions. 

formally by transforming to a special set of coordinates in 

Previously this problem has been avoided 

which only zero order forcing terms appear. 

a mathematical model for equations with derivatives of the 
This paper develops 

control functions and establishes conditions under which the 

formal transformation referred to above can be rigorously 

applied. - 
MATHEMATICAL MODEL OF A CONTROL SYSTEM CONTAINING 

DERIVATIVES OF THE CONTROL VARIABLES 

In the following,&will be a domain in the (t,x)-space, 

f(t,x) will be an n-vector function defined on 8 and u(t) will 
be an r-vector each of whose components are of bounded variation 

and _----------------------- continuous from the right on an interval Il. 
* * Senior Research Mathematician, Minneapolis-Honeywell Reg Co., 

The function 
Prepared under contract N A S w - 5 6 3  for the NASA. 

Minneapolis, Painnesota 
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g ( t )  w i l l  be a continuous nxr matrix defined on I1 and ( to ,xo)  

w i l l  be a point i n &  wi th  to a lso  i n  

I n  a control problem, one i s  given a d i f f e r e n t i a l  equation 

du - dx = f ( t ,x ,u)  + g ( t ) x  
d t  

involving f ,  g ,  u, and x. The operations of d i f fe ren t ia t ion  

a re  t o  be understood i n  the sense of d i s t r ibu t ion  derivatives 

and the equation w i l l  be called a measure d i f f e r e n t i a l  equation 

because the d is t r ibu t ion  derivative of a function of bounded 

var ia t ion can always be iden t i f i ed  with a measure. 

of control i s  t o  se lec t  the r-vector u ( t )  on an in t e rva l  of 

t i m e  [ to , t l ]  so that  the solution (response) of (18) w i l l  

i n i t i a t e  a t  a prescribed point xo a t  the t i m e  to and behave i n  

a prescribed manner on the interval  [ to,t l] .  

may be desired t o  s t e e r  the response from xo t o  a continuously 

moving ta rge t  s e t  G(~-)cR". 

The problem 

For exampie, it 

It w i l l  be convenient t o  change the notation i n  (99) t o  con- 

form with the previous remarks and t o  write the equation as 

Here the notation Dx means the d is t r ibu t ion  derivative of the 

function x,  

DEFINITION 1, 

n-vector x ( t )  together w i t h  an i n t e rva l  I containing the given 

i n i t i a l  t i m e  to such that x ( t )  i s  continuous from the r igh t  on 

I and 

A solution x ( t )  of (q) i s  a r e a l  bounded var ia t ion 
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(i) (t,x(t)) €00 f o r  t E I 

01) x(to) = xo 

(iii) the distribution derivative of x(t) on I is 

f(t,x) + g(t)Du. 
Next, the integral equation 

t t 
(4) x(t) = x0 + 1 f(s,x(s),u(s))ds + J g(s)du(s). 

will be considered. 

DEFINITION 2. 

n-vector x(t) together with an interval I such that 

A solution x(t) of (4) is a real bounded variation 

(i) 

(ii) 

(t,x(t)) E& for t E I 

x(t) satisfies the integral equation 

REMARK: 

the right. 

THEOREM 1. 

and conversely. 

A solution x(t) of (4) is necessarily continuous f r o m  

Also, x(t) has discontinuities where u does. 

A solution x(t) of ($> is a solution x(t) of m) 

A proof of Theorem 1 is given in reference 1. Also included 

in that reference are a number of theorems relating to existence 

and uniqueness of solutions to (srl), both locally and globally. 

For convenience in discussing the control problem for an 

equation of the form (q), the following assumptions regarding 
the coefficients are made: 

(i) f(t,x,u), E(t,x,u)) af are real continuous functions 

1 in R 

space and Q is a non-empty compact subset of Rn. 

x Rn x 0 where Rn is the real n-dimensional number 
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(ii) g(t) is a continuous nxr-matrix on R 1 

(iii) The functions u(t) are of bounded variation and 

continuous from the right on appropriate time intervals 

such that the graph of u(t) lies in f2. 

For each function u(t) as in (iii), but defined on a finite 

interval [to,tl], the measure differential equation @) has a 

unique bounded variation solution (called a response) on 

[to,tl] (or a subinterval) through a prescribed initial point 

(to,xo)o 

theorems of Chapter I of reference 1, 

response is, of course, the unique bounded variation solution of 

the integral equation 

This is a result of the existence and uniqueness 

The representation of 8 

DEFINITION 3. 

compact set R contained in R' and an initial point xo in Rn 

have been prescribed, is a vector valued function u(t) of bounded 

variation and continuous from the right on a finite interval 

[t,,tl] with its graph in Rsuch that its response x(t) with 

x(to) = xo is also defined in Rn on [to,tl]e 

DEFINITION k For a given real valued continuous function 

fo(t,x,u) defined on R1 x Rn x R, the cost functional C(u) 

of a control u(t) on [to,tll with response x(t> is defined by 

A control for the system m) where a non-empty 

tl 
C(U) = I fo(s,x(S),u(s))ds. 

If fo(t,xJu) 

which the control is exerted. 

1 then ~ ( u )  = tl - to, the time duration over 
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D E F I N I T I O N  5. Given the control problem for 

a) Dx = f(t,x,u) + g(t)Du with f, g, and u as previously 

described; the following data is also given: 

a non-empty compact restraint set nCRr (containing 

the graphs on the controls) 

XO E Rn, the initial point 

G(t)CRn on [ T ~ , T ~ ]  the continuously moving target set 

b) 

c) 

d) 

l. 
e) C(u) = / fo(s,x(s),u(s)>ds, the cost functional. 

For a given number E > 0, the set 
A = a (f(t,x,u), dt)9 0, xo, G(t), E) is defined as the set of 

all controls u(t) in il with u(t) of bounded variation and right 

continuous on subintervals [tO,t,]C[~o,~,] such that the total 

variation of each function u(t) on its interval [to,tl] is less 

than or equal to E, and w i t h  responses x(t) such that x(to) = xo 

and x(tl) E G(tl). 

controls. 

D E F I N I T I O N  6. 

This set A is called the set of admissible 

A control u*(t) in A is called optimal in case 

Cb*) 0 c(u) 
for every u(t) in A .  

REMARK: 

variation of the admissible controls is concernea with the fact 

that in a large class of problems the total variation is a 

mathematical manifestation of the motion of some process. It is 

those processes which contain devices capable of sustaining only a 

The hypothesis concerning the uniform bounded total 

bounded amount of movement, regardless of the admissible control 

that is applied, to which the following theorem pertains. 
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THEOREM 2. 

with the further restriction that there exist a non-decreasing 

function h(t) continuous from the right such that all u(t) in 

A satisfy the inequalities 

Given the control problem described in Definition 5 

lu(B) - u(a>l L h(B) - hb) 
for every subinterval [u,f3] of the interval [to,to + 61 for 

some appropriate 6 > 0, however small. 
It will be assumed that the set A is such that 

A )  A is not empty 

B) There exists a real bound B < 00 such tnat for ail 

responses x(t) corresponding to controls in 4 we 

have (x(t)l 2B. 

, 

CONCLUSION: Then there exists an optimal control in A e  

REMARK: 

the inequalities between u and h guarantee that xgt) lies outside 

G(t) for all responses and all t sufficiently near to. If the 

functions u(t) in A satisfy a uniform Lipschitz condition for all 

t in a neighborhood of to then the function h(t) may be taken to 

be a multiple of t. 

It is assumed that xo is not in the target G(to), then 

The proof of Theorem 2 may be found in reference 1. 

A STUDY OF A CERTAIN LINEAFt EQUATION 

The linear ordinary differential equation 
0 0 

E) 
0 0  

x + alx + aox = blu +- b2uo 
will be considered. This equation might be obtained, for example, 

in the analysis of the control of aircraft, (Reference 2, where 

the equations ~f longitudinal-symmetric motion of a rigid aircraft 
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a re  derived, contains the d e t a i l s ) .  I n  par t icu lar ,  the small 

amplitude pi tch motions of many a i r c r a f t  can be summarized 

apprcximately by solutions of the  equations 

& - klu - 0 = 5 6  (Flight Path equation) 

6 - k36 - k4a - k 5 a = Q6 

(1) 

(2)  
.. e 

(Pi tch equation) 

Here the k 

fuselage reference angle of attack, 8 corresponds t o  p i tch  

a t t i t ude  change, and 6 denotes elevator deflection. It w i l l  be 

a re  constants while a corresponds t o  the a i r c r a f t  
j 

convenient t o  define x = 6 and t o  eliminate a and & from (l)J 

(2) and the equation obtained from d i f fe ren t ia t ing  ( 2 ) .  

r e s u l t  is  

The 

00 x - (kl+k3+k5)G + (klk3-k4)x = (Q+%k5)6 + (%k4-klks)6 ( 3 )  

The equation (3) is  precisely of the form ( E ) .  
of considerable importance i n  engineering t o  t r e a t  t h i s  equation 

by allowing the control variable u ( t )  t o  be of the  re lay type, 

i o e e ,  t o  have discontinuities of the f i rs t .  kind. The presence 

of a derivative of u ( t )  prevents exis t ing theories from being 

applied and the problem i s  avoided formally by transforming t o  

a s e t  of coordinates i n  which the derivatives of the  control 

variable do not appear, (reference 3,  p .  191 supplies the details) .  

It I s  a problem 

To be more specif ic  now, the equation (6) w i l l  be considered 

where al, ao, bl, b2 a re  eonstants and where x ( t o )  = xo, ;(to) = g, 
l u ( t ) l  u < a f o r  a > 0, and al, a, > 0, bl # 0, b2f  0. The 

t a rge t  w i l l  

(x, 2) -plane 

be any compact set containing the or ig in  of the 

and the cost functional w i l l  be given as 

tl 
C ( U )  = fo(x(s)9i(s) ,  u ( s ) ) d s .  
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A t  t h i s  po in t ( [ )  w i l l  be reduced t o  a l i nea r  system f ree  

from derivatives of t he  control variable,  (reference 3 p. 191 

supplies the  detai ls) .  To this end, x i s  defined by 

x = a, + G,(t)u 

s, = % + a,( t )U 

jt2 = -aoxl 4 - a122 + ~ ~ ( t ) u  

f o r  as yet  undetermined, G o ( t )  and i2 i s  defined by 

f o r  undetermined G l ( t ) .  Then it i s  c l ea r  that 4 i s  given by 
0 

where Go, Q1, and Q2 a re  determined by eliminating 2, and g2 
f r o m  the above and requiring tha t  the resu l tan t  d i f f e r e n t i a l  

equation agree w i t h  (E) e The r e s u l t  is 

G o ( t )  = 0 

GI(*) = b l  

G 2 ( t )  = b2 - albl. 

The system 
R 4 

x1 = x2 + blu 

ti - alx2 A + (b2 - albl)u x2 = -a0a1 
is obtained with i n i t i a l  conditions 

q t o l  = xo 

G 2 ( t o )  = Co - blu(to). 

It is  observed that  the i n i t i a l  point (x,, Co) has been t rans-  

formed t o  a l i ne  segment i n  *he (21, Z2)-plane and that the  

t a rge t  G would be s i m i l a r l y  "enlarged". 

assumed t h a t  the  or ig in  of the (>1, %)-plane i s  i n  the i n t e r i o r  

For simplicity,  it is  

of G(k1,k2). The cos t  functional becomes 
t, 
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The ordinary system (8) does not contain derivatives of the 
control variables and can therefore be studied using the 

conventional theory. 

Next, ( E )  is written as a linear system by maMng no 

attempt to eliminate the derivatives of the control variable, 

i.e., by proceeding in a natural way by defining 

x1 = x 

the following system is obtained: 
* 

1 X 

%! 
At this point, the class of 

= x2 
- - -a,xl - al% + blu + b2ue 

admissible controls is taken to 

be the functions u(t) of uniform bounded variation, with 
I 

v(u,[to, t,]) < M, such that lul < a. Then (g) is written - - 
as a measure differential system 

Dxl = x* 

Dx2 = -a 0 1  x - alx2 + blDu + b2Ue 
The initial conditions in this instance are 

and the cost functional is 

-_------o_---o---u----~-- 

lv(u,[t0,tl]) means the total variation of the vector u(t) on 
the interval [to,tl], ioeoJ each component of u(t) is of 
uniform bounded total variation. 
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The target is assumed to have been defined by G(x, i )  - < 0 in 
which case the target becomes the set in the (xl,%)-plane 

defined by G(x1,x2) 5 0. 
It is shown in reference 1 that the set Awfor this 

problem is not empty, 

Now the responses to a linear system are easily shown to 

be uniformly bounded and the set 4 of admissible controls with 

variations limited by some vary large constant E which transfer 

Xo = (xl(to) x2(to)) to the origin is clearly not empty since 

the domain of controllability is the entire (xl, x2)-plane. 

Hence there exists an optimal control u*(t) in A which transfers 

the point Xo = (xo,Co) to the target G(x1,x2) - < 0 because 
the target was assumed to contain the origin of R‘. 

question resolved below is under what conditions will u*(t) 

also be the optimal control for the system (8) when that system 
is studied using the conventional methods? 

The 

A connection is first established between the components 

of the two vector solutions X(t) = (xl(t), x,(t))’ and 

?(t) = ($,(t), %(t)) of (VI) and ( 8 )  respectively. 

THEOREM 3. If u(t) is any function of bounded variation, then 

the first components of X ( t >  and X ( t )  are identical and 

the second components are related by 

/ 

A 

x2(t) - ;,(t) = blu(t). 

PROOF: It is observed that the systems (8)  and (@ have the 

same homogeneous part and that the fundamental solution matrix 
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A 
Hence, forming the difference X(t) - X ( t )  by using the variation 

of parameters representations for the solutions of each, there 

results 

Now, by integration by parts: 
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and the above reduced to 

A comparison of the cost functionals Co(u) and C (u) when 
@I 

u is a function of bounded variation shows by virtue of Theorem 

3 that they are identical. 
Ret-ming now to the study of system ( B ) ,  A* is defined to 

be the set of all measurable functions u(t) whose graphs lie 

i n  the s e t  hr JLI: !uI L a> and whose responses originate on the 1 
closed interval 21(to) = xo, Co - U - < %(to) L C, -+ U z, 

2 -  
and which are transferred to the target at time tl. 

in reference 1 that A* is not empty. 

It is shown 

It is to be noticed that if u*(t) is substituted in Co(u), 

there results 

Next, since the system 8) is proper (ice., rank [B, AB] = 2) 

then the optimal control u(t) will be relay if, for example, 

u appears linearly in fo(x,t), the integrand of the cost 

functional. 

tu or -a on finite segments of time) the optimal control u is 

Being a relay or step function (assuming values 

of bounded variation. 

C (u) are identical and there results (by definition of u* as n2 
minimizing C,(u) over all bounded variation controls whose 

total variation is uniformly bounded) 

Thus the two cost functionals C,(u) and 

But also the inequalities 
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imply C,($) = Co(u*) and thus G ( t )  i s  an optimal control f o r  

the system(r)r) because it has the desired response. 

transforming back t o  x and 2 i n  ( E )  there r e s u l t s  

from (v) : 

Also when 

x ( t )  = 

k(t) = x,(t) 

from @ )  : 

x ( t )  = q t )  
i ( t )  = $(t) + b l u ( t ) .  

But by Theorem 3, these are  ident ica l  s e t s  of data., 

CONCLUSION 

The optimal control problem for 
.* 0 

x + alx + aox = b p  + b2u 

can be t reated e i t h e r  by the system 
A 8, = X, + blu 

$, = - al% + (b2-albl)u 

o r  by the measure system 

Dxl = x2 

DX2 = -a x - al% + blDu + b2u. 0 1  
The system (8) involves an enlargement of the i n i t i a l  state 

and t a rge t  and leads t o  confusion. However, the theory of 

optimal control developed above f o r  measure systems @) enables 

a s t ra ight  forward treatment of the  optimal control t o  be given 

which agrees with ( 0 ) .  

(E) 
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